Human Glioma Cell Lines and Xenografts Characterization of the Epidermal Growth Factor Receptor in
نویسندگان
چکیده
Both permanent cultured cell lines and athymic mouse xenografts were established from two human glioblastomas. Biopsies from D-245 MG and D-270 MG contained amplified and rearranged epidermal growth factor receptor (EGFR) genes. Although the gene amplification and rearrangement seen originally was maintained in the xenografts, cultured cell lines established from these biopsies lost the amplified rearranged genes in vitro. Analysis of these cell lines and 11 additional permanent human glioma cell lines with normal EGFR gene copy number showed from 2.7 x Id1 to 4.1 x IO5 high affinity EGFRs/cell by radioreceptor assay. The RNase A protection assay showed minimal differences in the quantity of EGFR mRNA among the 13 glioma lines, while the D-245 MG and D-270 MG xenografts expressed approximately 10-20 times as much EGFR mRNA as the corresponding cell lines. Immunoprecipitation of EGFR from these lines, including D-245 MG and D-270 MG, dem onstrated only the intact M, 170,000 Da form, while truncated V/, 145,000 Da and 100,000 Da EGFR proteins were immunoprecipitated from the D-270 MG and D-245 MG xenografts, respectively. These studies demonstrate that glioma* with amplification of the EGFR gene are capable of establishing in culture but that the amplified rearranged genes are not maintained. Possible explanations are that the abnormal genes are lost during serial passage or that the cells with amplified rearranged genes only represent a minor subpopulation of cells, which are unable to grow in culture. In either case, these observations suggest that high expression and structural abnormalities of EGFR proteins generated by amplification and rearrangement of the EGFR gene provide a growth advantage for gliomas in vivo but not in vitro.
منابع مشابه
Assessment of epidermal growth factor receptor status in glioblastomas
Objective(s): Our previous study showed that a newly designed tracer radioiodinated 6-(3-morpholinopropoxy)-7-ethoxy-4-(3'-iodophenoxy)quinazoline ([125I]PYK) is promising for the evaluation of the epidermal growth factor receptor (EGFR) status and prediction of gefitinib treatment of non-small cell lung cancer. EGFR is over-expressed and mutated also in glioblastoma. In the present study, the ...
متن کاملAltered Expression of Epidermal Growth Factor Receptor (EGFR) in Glioma
EGFR is a key molecule in cancer cells. EGFR signaling was shown to promote tumor cell proliferation and survival, invasion and angiogenesis and mediate resistance to treatment, including ionizing radiation in preclinical models. We extracted proteins from astrocytoma (III and IV) oligodendroglioma(IV) tumors and normal brain tissues and then evaluated the protein purity by Bradford test ...
متن کاملCharacterization of the Epidermal Growth Factor Receptor in Human Glioma Cell Lines and Xenografts1
Both permanent cultured cell lines and athymic mouse xenografts were established from two human glioblastomas. Biopsies from D-245 MG and D-270 MG contained amplified and rearranged epidermal growth factor receptor (EGFR) genes. Although the gene amplification and rearrangement seen originally was maintained in the xenografts, cultured cell lines established from these biopsies lost the amplifi...
متن کاملAmplification and expression of the epidermal growth factor receptor gene in human glioma xenografts.
Xenografts from eight malignant human gliomas were established in athymic mice and were used to study amplification and expression of the epidermal growth factor receptor (EGFR) gene. Tissue identity between biopsy and xenografts was confirmed by karyotypic profiles, which showed that each glioma xenograft retained structural abnormalities, including double minute chromosomes, present in the pa...
متن کاملANTISENSE RNA TO THE TYPE I INSULIN-LIKE GROWTH FACTOR RECEPTOR REVERSED THE TRANSFORMED PHENOTYPE OF PC-3 HUMAN PROSTATE CANCER CELL LINE IN VITRO
The insulin-like growth factor I receptor (IGF-IR) plays an essential role in the establishment and maintenance of transformed phenotype. Interference with the IGF-IR pathway by antisense causes reversal of the transformed phenotype in many rodent and human tumor cell lines. We stably transfected the PC-3 human prostate cancer cell line with an IGF-IR antisense RNA expression plasmid. The ...
متن کامل